
Portals and Networking for the Lustre File System

Peter J. Braam, Phil Schwan
Cluster File Systems, Inc.

530 Showers Dr # 7-147

Mountain View, CA 94040�
braam,phil � @clusterfs.com

Ron Brightwell �
Sandia National Laboratories

PO Box 5800

Albuquerque, NM 87185-1110

bright@cs.sandia.gov

Abstract

Lustre is a scalable parallel file system for use on large-
scale compute clusters. Lustre needs to support many differ-
ent networks, including Ethernet, InfiniBand, Myrinet and
Quadrics. In this paper, we discuss how the Portals mes-
sage passing API developed by Sandia National Laborato-
ries provides a nearly optimal foundation for networking
the Lustre file system. Of particular interest are the con-
current presence of storage networking features, such as
remote DMA and request processing features that Portals
allows.

1. Introduction

The current Portals data movement interface [5] is an
outcome of research into high-performance message pass-
ing in lightweight kernel operating systems for massively
parallel distributed memory parallel computing platforms.
Earlier generations of Portals were implemented in the San-
dia/University of New Mexico Operating System (SUN-
MOS) [9] and its successor, the Puma [11] operating sys-
tem. Both of these lightweight kernels were deployed on
large-scale production platforms with thousands of proces-
sors. A productized version of Puma, called Cougar, is cur-
rently in use on the 9000+ processor Intel ASCI/Red ma-
chine.

Over the last few years we have transitioned Portals tech-
nology from proprietary vendor parallel platforms to large-
scale commodity-based PC clusters such as Sandia’s Com-
putational Plant (CplantTM) [4]. We redesigned the inter-
face and semantics to support scalable, high-performance
data movement using intelligent network interfaces such as
Myrinet [3]. An important characteristic of Portals is that

�
Sandia is a multiprogram laboratory operated by Sandia Corporation,

a Lockheed Martin Company, for the United States Department of Energy
under contract DE-AC04-94AL85000.

it provides low-level, flexible building blocks that be com-
bined to support higher-level protocols efficiently. In par-
ticular, we believe Portals supports the functional require-
ments of high-performance file systems like Lustre very
well.

The rest of this paper is organized as follows. Section 2
describes the internal structure of the Portals 3.0 implemen-
tation. Section 3 discusses the networking infrastructure of
Lustre, and Section 4 describes several current implementa-
tions.

2. Portals Internals

2.1. Protection Domains

The Portals API is not only useful to user-level systems
like MPI or file system libraries, but also to kernel-level sub-
systems: this environment defines the protection domain of
the API. The API will universally need library (lib) sup-
port for particular networking subsystems and this support
will normally run in a different protection domain. Two im-
portant library protection domains are a kernel-level library
that interacts with a device driver or networking library and
a library resident on a network interface card.

2.2. Network Abstraction Layer (NAL)

NALs exist for both the API and lib domains. These ab-
straction layers are two virtual classes, one for use by the
API, one for use by the lib domain. Derived classes are
implemented by drivers usually associated with particular
network systems, and instances of these classes are asso-
ciated with a network interface offered by a particular net-
work transport. Figure 1 illustrates the structure of the NAL
implementation.

An instance of the Portals service therefore breaks down
into the following components:

1. Portals APi library: offers the Portals API to applica-
tions and interacts with the API NAL.



forward

cb_write

Portals
lib

dispatch
events
parse

cb_recv

rx handler

Portals api library
user application
user memory

api NAL

lib NAL

network

cb_send

api domain

lib domain

Figure 1. Portals

2. The Portals library: the library offers a method
table including the following fundamental func-
tions: lib dispatch() executes functions for-
warded from the API library, lib finalize() is
responsible for generating events visible to the API li-
brary. Finally lib dispatch() is offered to find
the purpose and destination of incoming packets.

3. The API NAL supplies a method table to the API li-
brary. One of the methods is the forward method. The
API library uses the forward method as a function call
interface to the Portals library.

4. The lib NAL is the final component. It dispatches
requests forwarded by the API NAL to the Portals
library and has several other functions. It has an
autonomous handler associated with incoming traf-
fic. It offers several methods to the Portals library:
cb send() is used to send packets, cb write()
crosses the protection domain and delivers both data
and events to memory areas in use at in the API do-
main.

Figure 2 illustrates the internals of the Portals library and
NAL library layers in more detail.

3. Lustre Networking Infrastructure

3.1. The File System

Lustre [1] is a clustered file system that combines fea-
tures from many scalable previous distributed file systems
with ideas derived from traditional shared storage cluster
file systems. Lustre clients run the Lustre file system and
interact with object storage targets (OSTs) for file data I/O
and with metadata servers (MDS) for namespace opera-
tions. When client, OST and MDS systems are separate,

ni − network interface

shared free lists of
me/md/eq/msg
counters

lib_parse entry point

parse Put

parse Ack

parse Reply

parse Get

lib_finalize entry point

unlimk
MD/ME

find MD

ME/MD insert
attach etc.

lib_dispatch entry point
do_PtlGet
do_PtlPut

RxHandler forward handling

(see spec)

lists of ME’s/MD’s
Portals table with

Shared state

lib NAL

Portals library

cb_recv cb_write cb_send

ack

Figure 2. Portals Library Interactions

Lustre appears similar to a cluster file system with a file
manager, but these subsystems can also all run on the same
system, leading to a symmetric layout.

At the root of Lustre is the concept of object storage [6].
Objects can be thought of as inodes, and OSTs provide the
file I/O service in a cluster. The name space is managed by
metadata service which manages the inodes. Such inodes
can be for directories, symbolic links or special devices, in
which case the associated data and metadata are stored on
metadata servers. When an inode represents a file, the meta-
data merely holds references to the file data objects stored
on the OSTs.

Fundamental in this design is that the OSTs perform
block allocation for data objects, leading to distributed and
scalable allocation metadata. The OSTs also enforce se-
curity regarding client access to objects. The client OST
protocol bears some similarity to systems like DAFS in that
it combines request processing with remote DMA.

The client metadata protocols are transaction-based and
are derived from AFS [7], Coda [8], and InterMezzo [2] file
systems. The protocol features authenticated access, and
write-behind caching for all metadata updates.

Lustre can provide UNIX semantics for file updates.
Lock management supports coarse locks and for entire files
and subtrees, when contention is low, as well as finer locks.
Finer locks appear for extents in files and for pathname
locks to enable scalable access to the root directory of the
file system. All subsystems can transparently fail over to
other nodes.

3.2. Naming

The first issue that needs to be addressed is the naming
of systems, networks, and network interfaces and routing.
Lustre uses a resource database that names filesets that are
mounted, MDS servers that serve these, networks on which
the service can be reached and descriptors of the network-



ing interface cards with the addresses under which they can
be reached. As such, we implement a statically routed de-
scription of the cluster.

A client system offers its identity to the resource
database and finds out what filesets to mount. Following
the relational structures between the configuration descrip-
tors, the client derives what network and network addresses
to use. In the case a service migrates during a cluster transi-
tion, the client re-queries the resource database and adjusts
its network destinations before transparently failing over to
a replacement service. Services can be offered and used si-
multaneously on multiple networks.

The Portals API uses a triple (process id, network id, net-
work interface) to identify a network destination. For kernel
use, the process id is always 0, so an endpoint is identified
by a network id and interface. It is network dependent if
such an address can be reached through a connectionless
protocol or if a connection needs to be establish. A user-
level connection agent on the client establishes connections
to new systems and cleans them up in case of failures. Af-
ter possible connection establishement, the kernel is handed
the adressing information of the peer and proceeds to use
the Portals addressing scheme to reach that system.

3.3. Request Processing

For the most part Lustre follows a remote procedure
call (RPC) model of request processing. However, requests
travel in both directions. For example, a client must handle
lock callback requests if an OST or MDS server is making
such requests, thereby acting as a RPC client.

The features of the Portals API are extremely well-suited
to the request processing environment used by the Lustre
subsystems. Incoming requests are managed by a ring of
buffers. Portals provides for the automatic unlinking of
such buffers when they are full. The request processing
subsystem tracks when the incoming buffer is no longer in
use by the request handlers and then re-enters the buffer
in the ring. Associated with the incoming request buffer
is an event queue in which events are delivered describing
at what offset and from what originating system a request
was delivered, and activating a handling thread if it isn’t al-
ready working on requests. A service is also responsible
for sending out reply packets. An event is generated in the
sent reply event queue when a reply packet has been sent,
so that allocated memory can be freed. On the client, when
such a request is sent out, a reply buffer is preallocated and
the server is told the match entry for the reply packet. There
are event queues for sent requests and received replies.

When large numbers of related requests need to be
made, for example for lock revocations, multi-RPC’s are
used. These send out multiple requests, without waiting
for replies. When all requests are sent, replies are pro-

cessed. After a timeout, systems that have failed to reply are
deemed to have left the cluster. This is in contrast with han-
dling replies one by one, in which case multiple timeouts
can be enountered and server parallelism is not exploited.

3.4. Bulk Transport

Some Lustre operations, such as reads and writes of ob-
ject data on the OST, involve the transfer of large buffers
during request processing. This bulk data movement is in-
dependent of the RPC and is described by two basic struc-
tures, a bulk descriptor and one or more network I/O buffers
(niobufs). Both are symmetric structures used to enable data
movement in either direction.

The node that will receive the data, the bulk sink, re-
serves the necessary memory area and builds a bulk descrip-
tor. This descriptor contains all of the information that Por-
tals needs in order to receive the data directly into that mem-
ory, as well as a mechanism for notifying the caller when the
transfer completes. This mechanism relies on the Portals
acknowledgment facility to receive notification upon suc-
cessful message delivery, and is the only Lustre component
to do so. The sending node, the bulk source, builds a nearly
identical descriptor.

niobufs fall into two categories: local niobufs that de-
scribe an area of memory, and remote niobufs which de-
scribe a logical object extent. When Lustre needs to trans-
fer multiple extents of a single object, it sends a vector of
niobufs. Each niobuf represents a single non-overlapping
extent.

In a typical object write, the source will create lo-
cal niobufs pointing to kernel mapped pages, send remote
niobufs with offset and length information, and commence
bulk delivery. As the buffers are delivered, the source re-
ceives acknowledgements that trigger page unmapping and
niobuf cleanup. The sink will receive the remote niobufs,
map the relevant pages into memory, then wait for the data
to arrive. As each buffer is received, a handler is notified
and can perform any necessary finishing and cleanup.

Remote niobufs also contain space for additional deliv-
ery information, for example tokens to enable remote DMA.
When a client wishes to engage in remote DMA transfers,
it registers a memory buffer with the network interface and
receives an opaque token which is added to the niobuf. The
remote peer can use that token to directly access the mem-
ory on the client and perform faster I/O with lower over-
head.

3.5. Polling and Event Handling

Contrary to most user-level message passing systems
where polling the network is common, file services are typi-
cally event driven. The simplest events consist of waking up



a service thread or a thread waiting for a reply. Inline han-
dling of small requests at event delivery time is becoming
increasinly popular.

Portals events are delivered by the lib NAL, and this
NAL may not be running in the protection domain in which
the event can be executed. In fact, NALs implemented
on intelligent network interface cards (NICs), described in
more detail in the next section, can deliver events with-
out generating any interrupts. Lustre has been careful to
optionally accommodate polling clients by arranging event
dispatch from a polling thread, but this is not an acceptable
solution in most applications of the Lustre file system. We
have made minor modifications to original Portals API and
the NAL method table to optionally support generic inline
callback processing when desirable.

4. Network Abstraction Layers

4.1. NIC-Based NAL’s

Development of several NIC-based NAL’s is currently in
progress. Sandia has developed a Myrinet Control Program
(MCP), which runs on the processor on the Myrinet NIC,
that implements all of Portals’ objects and semantics. This
implementation is able to completely offload processing of
messages from the host processor to the NIC and delivers
all messages directly from the NIC to user-space buffers.

Sandia is also currently working on a NAL for the
Quadrics [10] ELAN3 network using the Elan library in-
terface. This NAL will use a queued DMA structure and
a thread executing on the thread processor on the ELAN3
NIC to perform processing of Portal messages.

4.2. Library-Based NAL’s

Library-based NALs, whether they reside in the kernel,
on the NIC, or anywhere else, all export the same simple
primitives. Fundamentally, the NAL is tasked with sending
and receiving data on the network, memory management in
the NAL protection domain, and concurrency control.

When a NAL is initialized, it does whatever is required to
receive notifications about incoming data. For the TCP/IP
NAL this means using a hook in the TCP/IP stack. For other
networks, it may involve other libraries or a handshake with
the NIC. When incoming data notifications occur, the NAL
is responsible for reading data off the wire and giving it to
Portals as requested. Once Portals has composed an outgo-
ing packet, the NAL is asked to put the data on the network.
Both of these are asynchronous mechanisms.

The Lustre team in collaboration with Lawrence Liver-
more National Laboratory has developed two Linux kernel
NAL’s, one using the Linux kernel socket interface and one
using the Quadrics Software kernel communications library.

5. Acknowledgments

The authors would to thank Lee Ward and Rumi Za-
hir for extensive discussions on Lustre networking and ac-
knowledge the contributions of Arthur B. Maccabe and Rolf
Riesen to the Portals architecture.

References

[1] http://www.lustre.org.
[2] http://www.inter-mezzo.org.
[3] N. Boden, D. Cohen, R. E. Felderman, A. E. Kulawik,

C. L. Seitz, J. N. Seizovic, and W. Su. Myrinet-a gigabit-
per-second local-area network. IEEE Micro, 15(1):29–36,
February 1995.

[4] R. B. Brightwell, L. A. Fisk, D. S. Greenberg, T. B. Hudson,
M. J. Levenhagen, A. B. Maccabe, and R. E. Riesen. Mas-
sively Parallel Computing Using Commodity Components.
Parallel Computing, 26(2-3):243–266, February 2000.

[5] R. B. Brightwell, T. B. Hudson, A. B. Maccabe, and R. E.
Riesen. The Portals 3.0 Message Passing Interface. Tech-
nical Report SAND99-2959, Sandia National Laboratories,
December 1999.

[6] G. A. Gibson, D. Nagle, K. Amiri, F. W. Chang, E. M. Fein-
berg, H. Gobioff, C. Lee, B. Ozceri, E. Riedel, D. Rochberg,
and J. Zelenka. File server scaling with network-attached
secure disks. In Measurement and Modeling of Computer
Systems, pages 272–284, 1997.

[7] J. H. Howard. An overview of the andrew file system. In In
Proceedings of the USENIX Winter Technical Conference,
1988.

[8] J. J. Kistler and M. Satyanarayanan. Disconnected oper-
ation in the coda file system. In Thirteenth ACM Sympo-
sium on Operating Systems Principles, volume 25 5, pages
213–225, Asilomar Conference Center, Pacific Grove, U.S.,
1991. ACM Press.

[9] A. B. Maccabe, K. S. McCurley, R. E. Riesen, and S. R.
Wheat. SUNMOS for the Intel Paragon: A brief user’s
guide. In Proceedings of the Intel Supercomputer Users’
Group. 1994 Annual North America Users’ Conference.,
pages 245–251, June 1994.

[10] F. Petrini, W. chun Feng, A. Hoisie, S. Coll, and E. Frachten-
berg. The Quadrics Network: High-Performance Clustering
Technology. IEEE Micro, 22(1):46–57, Jan./Feb. 2002.

[11] P. L. Shuler, C. Jong, R. E. Riesen, D. van Dresser, A. B.
Maccabe, L. A. Fisk, and T. M. Stallcup. The Puma operat-
ing system for massively parallel computers. In Proceedings
of the 1995 Intel Supercomputer User’s Group Conference.
Intel Supercomputer User’s Group, 1995.


